
CFGS DAM 2.1 Running processes in Java with Runtime | Process and Service Programming

IES Doctor Balmis 1 / 5

2.1. Running processes in Java with Runtime

PSP class notes (https://psp2dam.github.io/psp_sources) by Vicente Martínez is licensed under

CC BY-NC-SA 4.0 (http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1)

https://psp2dam.github.io/psp_sources
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

CFGS DAM 2.1 Running processes in Java with Runtime | Process and Service Programming

IES Doctor Balmis 2 / 5

2.1. Running processes in Java with Runtime
2.1.1. Quick process launch
2.1.2 System properties and command shells

2.1.1. Quick process launch

There are several methods defined in the Runtime class. These methods can be invoked to get the information about the runtime
environment such as number of processors available to the JVM, about of memory available, loading native library, explicitly call
garbage collector, and so forth.

Specification java.lang.Runtime (https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html)

Every Java program has an instance of the Runtime class, which encapsulates the runtime environment of the program. This class
cannot be instantiated, but we can get a reference singleton instance to the Runtime of the currently running program with the
help of the static method java.lang.Runtime.getRuntime().

The Runtime class method we are interested in, to create a new processes is

public Process exec(String command) throws IOException

This is a simple, not yet customizable, way to spawn a new sub-process.

As you can see the argument to exec method is just the program we want to run. In this example, as notepad is in the system
PATH it's not necessary to tell the path to the program. Otherwise, the path must be specified with the program name.

Design patterns: Singleton

¿What are design patterns? ¿What is and what is used for the singleton pattern?

Look how to implement a class with the singleton pattern.

Refactoring.Guru design patterns (https://refactoring.guru/design-patterns/java)

public static void main(String[] args) throws IOException {

 // Launch notepad app
 Runtime.getRuntime().exec("notepad.exe");

 // This way always works

 // String separator = System.getProperty("file.separator");
 // Runtime.getRuntime()

 // .exec("c:"+separator+"windows"+separator+"notepad.exe");

 // This way used to work (UNIX style paths)
 // Runtime.getRuntime().exec("c:/windows/notepad.exe");

}

java
1
2

3
4

5
6

7
8

9
10

11
12

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html
https://refactoring.guru/design-patterns/java

CFGS DAM 2.1 Running processes in Java with Runtime | Process and Service Programming

IES Doctor Balmis 3 / 5

2.1.2 System properties and command shells

If we plan to code platform independent applications, we have to deal with many issues because of differences between OS. So
sometimes we need to deal with specific OS information. A useful way to get that information is by getting System properties.

Specification System.getProperties
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#getProperties())

Some examples are provided here using System properties. Similar solutions can be used for other issues.

If we want to run an OS command we have to do it as we usually do, by using the command shell, where once again we find the
troubleshot with UNIX / Windows.

Let's take a look at the way we can use the system properties, once again, to get a list of files in the user personal folder.

File separator

For file path or directory separator, the Unix system introduced the slash character / as directory separator, and the
Microsoft Windows introduced backslash character \ as the directory separator. In a nutshell, this is / on UNIX and \ on
Windows.

Then, ¿how can we code OS independent applications??

In Java, we can use the following three methods to get the platform-independent file path separator.

System.getProperty("file.separator")
FileSystems.getDefault().getSeparator() (Java NIO)
File.separator Java IO

From now on, we are gonna use System properties in our applications for several situations using
System.getProperty(String propName) . These properties are configured by the OS and the JVM, though we can modify

them by setting the JVM running setting

String separator = System.getProperty("file.separator");

or

-Dfile.separator

Nevertheless is always a good practice to use slash character / in paths as Java is able to convert them to the system it is
running on.

// First we get the user folder path

String homeDirectory = System.getProperty("user.home");
// And then we set which OS are we running on

boolean isWindows = System.getProperty("os.name")
 .toLowerCase().startsWith("windows");

if (isWindows) {

 Runtime.getRuntime()
 .exec(String.format("cmd.exe /c dir %s", homeDirectory));

} else {
 Runtime.getRuntime()

 .exec(String.format("sh -c ls %s", homeDirectory));

java
1
2

3
4

5
6

7
8

9
10

11
12

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#getProperties()

CFGS DAM 2.1 Running processes in Java with Runtime | Process and Service Programming

IES Doctor Balmis 4 / 5

Next you can look at a handler event manager for a mouse clic, into a graphic application, to open a web site in a browser. The
code shows how to do it in *X like operating system and one way to do it in Windows systems is commented.

non-interactive shell mode

In the previous code example, both for Windows and UNIX modifier c is used for command shells. This modifier tells the
system to open a command shell, to run the companion command and close the shell after it has finished.

System properties

Our first applications in java is not gonna be an easy one.

Using methods from System class and Runtime class, write the code for an app that shows

all the system properties configured in your OS
total memory, free memory, used memory and processors available

Make a research into Runtime class methods. For System properties try to get a list or iterable data estructure to show
each of the system properties and their values.

Number format

In any programming language we have many different ways to format the information shown to the user. As in this first
applications we are using the console as the system output, let's check the two main techniques we can use in Java

NumberFormat (https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html)

Using NumberFormat class or any of its descendants we can get control on how the numbers are shown with high
precision, using numeric patterns.

System.out.printf (https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Formatter.html)

}

// Calling app example

public void mouseClicked(MouseEvent e) {
 // Launch Page

 try {
 // Linux version

 Runtime.getRuntime().exec("open http://localhost:8153/go");
 // Windows version

 // Runtime.getRuntime().exec("explorer http://localhost:8153/go");
 } catch (IOException e1) {

 // Don't care
 }

}

DecimalFormat numberFormat = new DecimalFormat("#.00");

// Hashes can be used instead of zeros to allow .30 to be shown as 0.3
// (additional digits are optional)

System.out.println(numberFormat.format(number));

13

java
1
2

3
4

5
6

7
8

9
10

11
12

java

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Formatter.html

CFGS DAM 2.1 Running processes in Java with Runtime | Process and Service Programming

IES Doctor Balmis 5 / 5

Similar to C's printf syntax, we can use the java.util.Formatter syntax to set how data is visualized.

Colours in console applications

There is a way to print in different colours when using the console. Here you have got an example code with some
colours and the way to use it.

System.out.printf("\n$%10.2f",shippingCost);
// numbers after % print preceding spaces to fill

// and justify numbers.
System.out.printf("%n$%.2f",shippingCost);

public class UsingColoursInConsole {

public static final String ANSI_RESET = "\u001B[0m";

public static final String ANSI_BLACK = "\u001B[30m";
public static final String ANSI_RED = "\u001B[31m";

public static final String ANSI_GREEN = "\u001B[32m";
public static final String ANSI_YELLOW = "\u001B[33m";

public static final String ANSI_BLUE = "\u001B[34m";
public static final String ANSI_PURPLE = "\u001B[35m";

public static final String ANSI_CYAN = "\u001B[36m";
public static final String ANSI_WHITE = "\u001B[37m";

public static final String ANSI_BLACK_BACKGROUND = "\u001B[40m";

public static final String ANSI_RED_BACKGROUND = "\u001B[41m";
public static final String ANSI_GREEN_BACKGROUND = "\u001B[42m";

public static final String ANSI_YELLOW_BACKGROUND = "\u001B[43m";
public static final String ANSI_BLUE_BACKGROUND = "\u001B[44m";

public static final String ANSI_PURPLE_BACKGROUND = "\u001B[45m";
public static final String ANSI_CYAN_BACKGROUND = "\u001B[46m";

public static final String ANSI_WHITE_BACKGROUND = "\u001B[47m";

 public static void main(String[] args) {
 System.out.println(ANSI_GREEN + ANSI_WHITE_BACKGROUND + "Hello"

 + ANSI_BLUE + ANSI_YELLOW_BACKGROUND + " Bye bye" + ANSI_RESET);
 }

}

java

java

	2.1. Running processes in Java with Runtime
	

	2.1. Running processes in Java with Runtime
	2.1.1. Quick process launch
	2.1.2 System properties and command shells

